

Aviation Safety Program

Report to Industry 8/13/97

Charles H. Huettner NASA Headquarters

Michael S. Lewis NASA Langley Research Center

Outline

- Background
- The Aviation Safety Program
- How to get involved
- Program philosophy

Safety Challenge:

Number of accidents will significantly increase if accident rate does not decline

Background

- Historically, major advances in safety have been driven by technological revolutions
 - Airframe structures (materials, analytical methods)
 - Turbojet engines
 - Radio/Radar
 - Simulators

Background

- The next technology revolution is already underway -- Information Technology (IT)-- and it will significantly impact safety, security, and air traffic control modernization
 - Aviation is Transitioning to Digital Systems
 - Each Part of the Aviation System is Imbedding IT
 - Drivers Economics & Global Competition
 - An Interconnected Aviation System of Systems is Evolving

Integrated Aviation Information System Aeronet

Operating Procedure Effectiveness

- Accident / Incident Investigation

System Reliability

- **Decision Making**
- Roles of People
- Pace of Change

Aviation Safety Research has Always Been Part of NASA's Mission

Recent Accomplishments:

- Airborne Wind Shear Sensors Technology Provides Advance Warning
- Stall/Spin Improvements Slash General Aviation Accident Rate
- Propulsion Control Aircraft System Provides Emergency Maneuverability
- Human Factors Training in Cockpit Resource Management Saves Hundreds of Lives
- Human Fatigue Countermeasuers Improve Operational Safety
- Research Provides Protection from Lightning and Stray Electromagnetic Radiation

NASA <u>Comprehensive</u> Aviation Safety Initiative: Two Years in the Making

- Aviation Safety identified as needing more attention (1995)
- FAA Safety Executive detailed to NASA (1995)
- Joint NASA/FAA Aviation Safety Baseline developed (1996)
- Baseline results coordinated with the Aviation Community (1996-7)
- NASA decision to invest \$500M as a result of the Gore Commission
- NASA's first Aviation Safety Strategy Workshop occurred 6 days after the President announced the National Aviation Safety Goal.

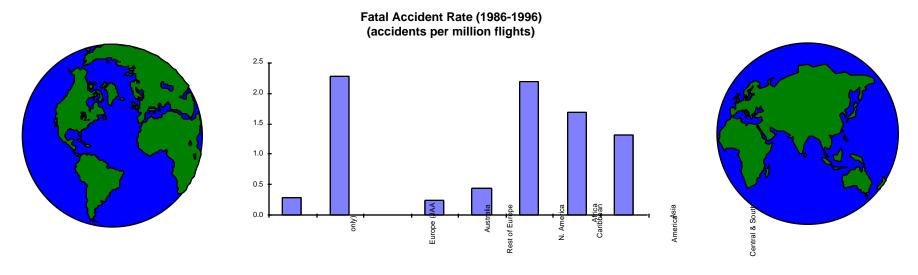
Aeronet Flight Crew **Maintenance Airports** Air Transportation (Passengers)/ **Aircraft** Dispatch / Manufacturers Flight Ops **Centers** Air Traffic Management

Aviation Safety Goals

AIRCRAFT / ATC SYSTEM(S): Prevent Malfunctions
PEOPLE: Eliminate Human Caused Mishaps
ENVIRONMENT- Ensure Separation Between Aircraft
and Hazards

Aviation Safety Research

"We will achieve a national goal of reducing the fatal aircraft accident rate by 80% within 10 years."


President William J. Clinton, February 12, 1997

National Aviation Safety Goal

Aviation Safety is a Global Issue

- Aircraft / Equipment Sold Internationally
- Passengers Travel Internationally
- Carriers Operate Internationally

- US Aviation Safety Initiative being formed.
- It is vital that you join with us to achieve "Five-fold reduction..." as an International Goal.
 - Do you want to join with us?
 - What are your current/planned Safety Research efforts?
 - How should we proceed?

Forces Converging to Enable the Goal

- Information Technology Revolution
- Top Level Support
 - Government President, Congress & Agency Administrators
 - Industry CEOs
 - Public & Press Intense interest
- NASA initial investment of one-half billion dollars
- Transition to New Air Traffic Management System
- Retrofit of Aviation Fleet to Digital Com, Nav, & Surveillance (CNS) Technologies

NASA's Role in Aviation Safety:

To Develop the Enabling Technology to Eliminate Accident Precursors

Alignment = Incident or Accident

Metrics

- The ultimate metric is fatal accidents
- Fatal accidents are difficult to use as a metric for measuring research progress
 - Few fatal accidents occur per year
 - The circumstances of fatal accidents vary greatly
- The challenge is to accurately identify accident precursors from the much larger set of incidents or from operational data such as flight data recorders
- The understanding between accidents and accident precursors does not exist today

NASA Aviation Safety Research Initiative: A Partnership for Safety

NASA

- Program Development
- Enabling Technology

FAA

- Regulation / Certification Issues
- Technology Insertion

DoD

 Technology Transfer (military -> civil)

Industry

- Issue Identification
- Feedback
- Implementation

Universities

Research

Coordinated Program Planning

ASIST Participating Organizations

Advanced Nav. & Position Corp. Embry-Riddle Aeronautical Univ. NASA/ DRFC AIA ERC Inc. NASA/HQ FAA/ AAR NASA/JPL AIAA Alaska Airlines FAA/ AAR (LaRC) NASA/LaRC Allied Signal FAA/ ACE NASA/LeRC Allison Engine Company FAA/ AFS NATA FAA/ AIR NATCA ALPA AMA FAA/ AND Natl. Inst. for Aviation Research AOPA Air Safety Foundation FAA/ ANM National Weather Service **ARCCA** FAA/ ARA **NAVAIR ARINC** FAA/ ASD NBAA Arizona State Univ. FAA/ ASY **NCAR** ARNAV Systems, Inc. FAA/ AUA NOAA FAA/ AVR Assoc. of Flight Attendants North Carolina A&T Univ. FAA/ AWR Northrop Grumman ATA Aviation Research Inc. FAA/ CAMI Northwest Airlines AvioniCom FAA/ Technical Center NRL Battelle Flight Data Co. NTSB - Seattle Field Office Bell Helicopter/ Textron **GAMA** NTSB - Washington, DC Office General Electric OFCM - Fed. Coor. for Metrlay Boeing **Boeing Helicopter Group Pratt & Whitney Aircraft Engines** Gulfstream Aerospace **Boston University** Helicopter Assoc. Inter. (HAI) Regional Airline Assoc. Cessna Aircraft Co. Honeywell Rockwell International **Delta Airlines** Hughes RTI DoD/ Air Force Safety Center SAIC Jeppesen Johns Hopkins Univ. DoD/ ARMY Safety Center SAMA DoD/ NAV Air Litton/ APD Sikorsky Aircraft **TASC** DoD/ Naval Safety Center Litton/ PRC DoD/ NAVMAR Lockheed Martin TechMatics, Inc. DoD/ NAWCAD, Pax River McDonnell Douglas Teledyne Cont. McDonnell Douglas Helicopter UCLA DoD/ USAF, 416FLTS

MITRE Corporation

NARI

NASA/ ARC

University of Illinois Wichita State University

Williams International

DoD/ USAF/WPAFB

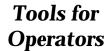
DOT/ Volpe Center

DoD/ WL/XPK

Multi-Level Approach to Improved Safety

NASA Aviation Safety Investment Strategy Team (ASIST) Process

Five ASIST Sub-Teams Formed:


- Human Error Consequences
- Weather
- Flight Critical Systems & Information Integrity
- Human Survivability
- Aviation System-wide Monitoring,
 Modeling & Simulation

Aviation Safety Research Solution Set

Technology to Address Problems Before They Occur

Technology to
Address Specific
Accident Classes

Outline

- Background
- The Aviation Safety Program
- How to get involved
- Program philosophy

Accident Data-Driven Approach

(Weather)

	Ac	cident	Rate	Data	(appro	ox)					
G,	/A	Comr	nuter	Trans	sport	Rot	orcraft				
Fatal	Non- Fatal	Fatal	Non- Fatal	Fatal	Non- Fatal	Fatal	Non- Fatal	Atmosp Weather			
1	1	1	1	1	2	1	1	Ceiling & Vis	sibility		
								Fog/			
								Precipi			
								Clou			
								Night			
3	2	2	2	2	3	2	2	Convection as	nd Winds		
								Thunder	rstorms		
								На			
								Heavy			
2	1	2	2				1	Wir			
		2		2				Wind Shear			
3	3	3	3	3	1	3	3	Turbulence			
								Conve	ection		
								Terrain I	nduced		
								Jet St			
								Tropo			
								Gravity			
								Froi	ntal		
2	3	1	2	1	3	2	2	Icing			
								In-FI	-		
								Gro			
								Induction (I	Dew Point)		
3	3	3	3	3	3	3	3	Wake Vortex			
3	3	3	3	3	2*	3	3	Volcanic Ash			
3	3	3	3	2	3	3	3	Runway Conta	am.		
			1 2		ant Cont te Contri						
			3		Contribi						
		l		wiii iii ii iai	COITTIBL	uter to A	accident	.5			

Solution Strategy Matrix (Weather)

	Ac	cident	Rate	Data	(appr	ox)												
G,	/A	Comr	nuter	Tran	sport	Roto	rcraft		Strategic Weather Information				ion	Tactical Informa Aircraft	tion and	Weather Operations		
Fatal	Non- Fatal	Fatal	Non- Fatal	Fatal	Non- Fatal	Fatal	Non- Fatal	Atmospheric/ Weather Hazard	Sensing	Collection	Modeling and Forecasting	Product Generation	Data Dissem- ination	Sensors/ Systems	Weather Tolerant Aircraft Design	Simulation and Hazard Character- ization	Crew/Dispatch /ATC Hazard Monitoring, Display, and Decision Support	Crew/ Dispatch/ ATC Training
1	1	1	1	1	2	1	1	Ceiling & Visibility Fog/Haze Precipitation Clouds Night Ops										
3	2	2	2	2	3	2	2	Convection and Winds Thunderstorms Hail Heavy Rain										
3	3	2 2 3	2	2	1	3	1	Winds Wind Shear Turbulence										
								Convection Terrain Induced Jet Stream Tropopause Gravity Waves Frontal										
2	3	1	2	1	3	2	2	In-Flight Ground Induction (Dew Point)										
3 3 3	3 3 3	3 3 3	3 3 3	3 3 2	3 2* 3	3 3 3	3 3	Wake Vortex Volcanic Ash Runway Contam.										

Significant Contributer to Accidents
Moderate Contributer to Accidents
Minimal Contributer to Accidents

Current Technology Assessment Matrix

(Weather)

	Acc	cident	Rate	Data	(appr	ox)														
G.	/A	Comr	nuter	Tran	sport	Roto	rcraft		s	trategic	Weather I	nformatio	n	Informa	Weather tion and Systems	Wea	Weather Operations			
Fatal	Non- Fatal	Fatal	Non- Fatal	Fatal	Non- Fatal	Fatal	Non- Fatal	Current Wx Technology/ Systems Assessment	Sensing	Collection	Modeling and		Data Dissem- ination	Sensors/ Systems	Weather Tolerant Aircraft Design	Simulation and Hazard Character- ization	Crew/Dispatch /ATC Hazard Monitoring, Display, and Decision Support	Crew/Dispatch		
1	1	1	1	1	2	1	1	Ceiling & Visibility	Scrising	Concetion	Torccasting	ocheration	mation	Systems	Design	ization	Зарроге	77KTO TTAINING		
								Fog/Haze Precipitation Clouds Night Ops	2 3 2	2 2 2	1 1 1	2 2 2	1 1 1	2 3 2 2		3 3 3	1 1 1	2 2 2 2		
3	2	2	2	2	3	2	2	Convection and Winds										1		
2	1	2 2	2	2			1	Thunderstorms Hail Heavy Rain Winds Wind Shear	2 2 3 2 2	2 3 2 2 2	2 1 2 2	2 1 2 2 3	1 1 1 1 2	3 2 2 1 2	2 2 2 2 2	3 3 3 3 3	1 1 1 1 2	2 2 2 2 2		
3	3	3	3	3	1	3	3	Turbulence												
								Convection Terrain Induced Jet Stream Tropopause Gravity Waves Frontal	1 1 1 1 1 2	1 1 1 1 1 2	1 1 1 1 1 1 2	2 1 1 1 1 1 2	1 1 1 1 1	1 1 1 1 1	2 2 2 2 2 2	1 1 1 1 1 1	1 1 1 1 1 1	2 2 2 2 2 2 2		
2	3	1	2	1	3	2	2	Icing												
								In-Flight Ground Carburetor	1 2 3	2 3	1 2 3	1 2 2	1 2 1	2 2 2	2 1 1	2 2 3	1 1 2	2 2 2		
3	3	3	3	3	3	3	3	Wake Vortex	1	1	1	1	1	1	2	1	1	2		
3	3	3	3	3 2	2* 3	3	3	Volcanic Ash Runway Contam.	2	2 3	2 1	3 2	1	1 2	1 1	1 1	1 1	2		

Significant Contributer to Accidents
Moderate Contributer to Accidents
Minimal Contributer to Accidents

Minimal or No Current Capability
Current Capability/Systems Partially Capable
Current Capability/Systems Reasonably Adequate
Not Applicable

Current R&D Assessment Matrix

(Weather)

		Acc	cident	Rate	Data	(appr	ox)												
	G/	A	Comr	nuter	Tran	sport	Roto	rcraft		Si	trategic	Weather II	nformatio	n	Informa	Weather tion and Systems	Wea	ther Operat	ions
Fat		Non- Fatal	Fatal	Non- Fatal	Fatal	Non- Fatal	Fatal	Non- Fatal	Current Weather R&D Assessment	Sensing	Collection	Modeling and Forecasting	Product Generation	Data Dissem- ination	Sensors/ Systems	Weather Tolerant Aircraft Design	Simulation and Hazard Character- ization	Crew/Dispatch /ATC Hazard Monitoring, Display, and Decision Support	Crew/Dispatch /ATC Training
1		1	1	1	1	2	1	1	Ceiling & Visibility										
	T					1			Fog/Haze	2	1	1	2	2	2		1	1	1
						l			Precipitation	3	2	1	2	2	2		1	1	1
						l			Clouds	2	2	2	2	2	2		1	1	1
									Night Ops						2				
3		2	2	2	2	3	2	2	Convection and Winds										
									Thunderstorms	3	2	2	2	2	1	1	2	1	1
						l			Hail	2	2	2	1	2	2	1	2	1	1
	L					l			Heavy Rain	3	2	2	2	2	1	1	1	1	1
2		1	2	2		l		1	Winds	1	1	2	2	2	2	1	1	1	1
			2		2				Wind Shear	3	2	1	1	2	2	1	1	1	1
3		3	3	3	3	1	3	3	Turbulence										
	ı					l			Convection	1	2	2	2	2	1	1	2	1	1
						l			Terrain Induced	3	2	2	2	2	1	1	2	1	1
						l			Jet Stream	1	2	2	2	2	1	1	2	1	1
						l			Tropopause	1	2	2	2	2	1	1	2	1	1
						l			Gravity Waves	1	2	1	1	2	1	1	2	1	1
	_			_					Frontal	1	2	2	- 1	2	- 1	1	2	1	1
2	4	3	1	2	1	3	2	2	Icing										
	1			l		I			In-Flight	2	2	2	2	1	2	2	2	1	1
	1			l		I			Ground	2	2	2	2	1	2	1	2	1	1
_	4								Carburetor	1	2	2							
3	4	3	3	3	3	3	3	3	Wake Vortex	2	1	2	2	2		1	1	2	1
3	4	3	3	3	3	2*	3	3	Volcanic Ash			2					1 1		
3		3	3	3	2	3	3	3	Runway Contam.	2	2	2	1		2	1	2		1

Significant Contributer to Accidents
Moderate Contributer to Accidents
Minimal Contributer to Accidents

Minimal Or No R&D Efforts Underway or Funded
Moderate R&D Efforts Underway or Funded
Significant R&D Efforts Underway or Funded
Not Applicable

5-Year Investment Matrix (Weather)

Moderate Contributer to Accidents Minimal Contributer to Accidents

Third Priority Investment Areas

Transport Prime Focus Investment Area ■Both GA and Transport Investment Area

15-Year Investment Matrix

(Weather)

5-Year Investment Matrix

(Human Error)

	7			- /			
			Solutio	n or Inter	vention		
Human Error 5-Year Investment Areas	Select & Training	Proced	Roles & Respons	Metrics & Models for Evaluation	System Design	New System or Tech	Sched
HUMAN							
Capabilities (neuromotor, etc)	V-1						
Skill Proficiency							
Performance Readiness				V-3			V-5
Cultural Factors	7			_	V-7		
TASK		7					
Teamwork	M-1	M-2		A-1			
Communications						1/2.2	
Decision Making	V-2					A/G-2	
Human-Machine Interface & Interaction			V-8				
Situation Awareness	R-1				R-2		
Task Allocation, Demand and Mgmt							
Procedures		M-3			A-3		
PERSONAL ENVIRONMENT							_
Physical							
Organizational culture		A-4					
A, G, M	Airline/GA/Ma	aint	R	Rotorcraft		V	ALL Vehicles
A-1 Design to support Teamwork			V-1	HUMAN Sele		•	
A-3 Procedures Design Methods A-4 Organizational Culture for Safety			V-2/2* V-3	TASK Selecti	,	g Models for Evalı	uation
A-4 Organizational Culture for Salety A/G- Flight Deck Design and Integration			V-3 V-4	Skill Proficier		VIOUEIS IUI EVAII	ualiUH
M-1 Maintenance Training (augment FAA ongo	ing pgm)		V-5	Fatigue and Circadian Disruption Impacts			
M-2 Maintenance Teamwork Procedures & Role	es/Responsibi	lities	V-6	• .	•	ance Readines	S
M-3 Maintenance Task Procedures			V-7	Cultural Facto		D	
R-1/ Rotorcraft-specific Procedures and Training R-2 Rotorcraft-specific pilot aiding systems)		V-8/8*	Human/Autor	nation Desig	n Principles and	d Guidelines
A-2 Notororant-specific pilot alumy systems							

5-Year Investment Matrix

(Flight Critical Systems & Information Integrity)

FCSII 5-Year Investment Areas		Solution/Intervention Areas											
Issues	Sensing	On-board Algorithms (e.g. control, health monitoring)	Actuating (incl. Hydraulics and Electric)	Maintenance & Inspection		Interface, Comm., & Display	Design, Verification, Certification, Manufacture	CNS/ATM					
Airframe	2							Technology					
Propulsion	Aircraf	t Control in	Aging Aircraft	/	ediction,	/	Critical n Design,	Integration, Validation, an					
Systems	Ac	lverse	Systems	\	ng, and DE	Verifica	tion, and ication	Effective Transition					
Integration	2					Met	hods	2					
Information Integrity		Health & Usa	 age Monitoring	Design/Assessment of Data Link									
Air Traffic Control	for Rotorcraft & Aircraft NAS Tools for Safety &												

	High Need
2	Medium Need
	Low or No Need
	Not Applicable

Potential 5-Year Investment:

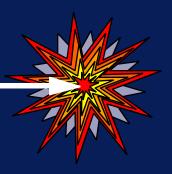
- 5.1 Aircraft Control in Adverse Conditions
- 5.2 Life Prediction, Modeling, and NDE
- 5.3 Aging Aircraft Systems
- 5.4 Flight Critical System Design, Verification, and Certification Methods
- 5.5 Technology Integration, Validation, and Effective Transition
- 5.6 Design & Safety/Risk Assessment of Data Link Technologies
- 5.7 NAS Tools for Safety & Security
- 5.8 Health & Usage Monitoring Systems for Rotorcraft & Aircraft

5 Year Investment Matrix

(Accident Mitigation)

		(1100.							
Fatal Accident Statistics			So	olutions	/Approa	ches			
Fatal But Survivable Accidents	Fatalities & Serious Injuries Related to	Alternate Ox System/Prot. Devices for Contaminants/	Detection/ Suppression Systems	Fire Safe Fuel / Crash Res Fuel Systems	Training	SystemDesign/ Standards /Criteria	Analysis/ Modeling	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Adv. Seats/ Restraint Sys.
See Statistics	CRASH (Impact)					Syster Approac Crashwort	<u>ch to</u>	ORITY 2	
Charts	FIRE		Fire Pre	evention RITY 1					
	EVACUATION				(<u>Appr</u>	stems coach to PRIC cuation	ORITY 3)
	OCCUPANT PROTECTION (Maintaining Physiological Stability)	Occupant Prot. PRIORITY 4							

Five-Year Investment Matrix


(Aviation System Modeling and Monitoring)

Technology Areas	;		Monitorin	g Systems	6		Simula	ation and M	odeling
Cofety Application	Information Infrastructure	Data Acquisition	Standards	Analysis	Information Dissemination	Decision Support	Airspace Operations	System Component	System Simulations
Safety Application Understanding Incidents and							Models	Simulations	
Accidents									
Causal Information	\neg \sqcap								
Trending Information	\forall			Data Ana	alysis Tools				
Human interface to Large	\dashv \forall	\neg							
Quantities of Data	√ . ↓	_/							
Non-Technical Barriers) g	/ c c	<u> </u>						
Human Performance	1 8 1	7 8	3						
Baselining	Sharing Technology	Cache For Leave	<u> </u>						
Predictive Aids	ြင	9	5						\forall
Technology Insertions	_ g								၂ ဉ်
Flight Operations	Ë								eal e
Performance	ha	\ ;	2						Vid
Baselining	S	<u>}</u>	[High-Fide	lity Syster	ڄ ڪ ح
Predictive Aids	Data	$\frac{1}{2}$	}					Modeling	ion
Technology Insertions		+uokion+Viscion+							System-Wide Simulation Research
Aircraft Performance	\uparrow //	\dashv							ן s mm
Baselining	\neg		(<u> </u>						
Predictive Aids	\neg								
Technology Insertions	$\neg \setminus / \neg$								
System Management									
Metrics									
Airspace Ops/Flt. Planning		Safetv	Data Stud	lies and Te	echnology				
System-wide evaluation	1				3				
Certification/Regulation						/			

Accidents Result From a Combination of Events

Challenge: Develop Solutions to Eliminate Entire Categories of Accidents, not Single Cases

- Accident/Incident Analysis
- Safety Metrics
- System-Wide Monitoring and Modeling

Strategy #1: "Attack the hole on the left"- Prevent the Initial Event

Example Solutions

- "Virtual VMC" Displays for Night/Low Visibility Conditions
- World-Wide Digital Weather Information for Graphical Cockpit Displays

Strategy #2: "Design/Operate with Fewer and Smaller Holes"

Example Solutions

- Error-Proof Flight Deck Designs
- Guaranteed Flight Critical Information Integrity

Strategy #3: "Add a solid disk to block failures from becoming accidents"

Example Solutions

- Re-Configurable Flight Controls
- Engine Failure Containment
- Crashworthy Structural and Fuel System Designs

Early Starts

Disseminate Current Weather Products

Identify Accident Precursors

- Studies
- Analysis Tools & Techniques
- Tools for Airline FOQA Programs

Advanced General Aviation Technology Experiment (AGATE) Results

Helicopter Health & Usage Monitoring

Human Error Metrics - Design & Procedures

Improved Training - Weather, FMS, Maintenance

Aging Aircraft & Systems NDE Tools & Methods

Integrated Crashworthiness for GA Aircraft

The Future

"Virtual VMC" Displays for Night/IMC Conditions

World-Wide Strategic Separation from Hazardous Weather, Traffic, and Terrain

Aircraft and Aviation System-Wide Health Monitoring and Failure Prediction

Error-Proof Flight Decks

Measurable Training and Operator Proficiency

Guaranteed Flight Critical Information Integrity

Damage Tolerant Aircraft and Control Systems

Crash-Survivable Aircraft Designs

Timeline to Date

- ASIST Start: 2/97
- ASIST Report: 4/97
- Lead Center Selection: 5/97
- Budget sources identification: 6/97
- Office structure approved: 7/97
- Budget allocations: 7/97
- Program management personnel assignments: 8/97
- Industry Brief: 8/97

Desired Program Attributes

- Proper technical breadth/focus & direction to achieve 10x goal
 - Understand aviation problems, technologies, system integration
 - Technically aggressive (no nibbling at the edges)
 - Goal-oriented, data-driven, metrics-monitored
- Achieves critical buy-in from aviation community
 - Other gov't agencies and required breadth of industry/operators/public
 - Operationally realistic & implementable
- Assures complete path from technology development to test to certification
- Effectively manage organization and communication challenges in a multi-Center, multi-agency, multi-industry program
 - Joint partnerships wherever possible
 - Efficiently/professionally/publicly run
- Fun and rewarding to work

Program Organization

Points of Contact (ASPO)

AVIATION SAFETY PROGRAM OFFICE

<u>NAME</u>	<u>EMAIL</u>	<u>TELEPHONE</u>	FAX
Michael H. Durham	m.h.durham@larc.nasa.gov	757-864-9100	757-864-2166
George B. Finelli	g.b.finelli@larc.nasa.gov	757-864-9100	757-864-2166
Dave Foyle	dfoyle@mail.arc.nasa.gov	650-604-3053	
Yuri O. Gawdiak	ygawdiak@mail.arc.nasa.gov	650-604-4765	
Hugh R. Gray	hugh.r.gray@lerc.nasa.gov	216-433-3230	216-433-6624
Michael S. Lewis	m.s.lewis@larc.nasa.gov	757-864-9100	757-864-2166
Charles Morris Cynthia H. Null	cmorris@hq.nasa.gov	757-864-9100	757-864-2166
	cnull@mail.arc.nasa.gov	650-604-1260	650-604-6990
Douglas A. Rohn Jaiwon Shin	douglas.a.rohn@lerc.nasa.gov	216-433-3325	216-977-7051
	jaiwon.shin@lerc.nasa.gov	216-433-8714	216-433-2182
Joel Sitz	joel.sitz@dfrc.nasa.gov	805-258-3666	805-258-2134
Connie A. Smith	c.a.smith@larc.nasa.gov	757-864-9100	757-864-2166
John J. White, II	j.j.white@larc.nasa.gov	757-864-3849	757-864-2166

From ASIST Elements to ASP Groups

ASIST Elements

ASP Groups

ASIST Elements

ASP Groups

Aircraft Control in Adverse Conditions	Adverse Conditions
Fault & Damage Tolerance	
Advanced Containment Concepts for Engine Failure	Engine Failure
Life Prediction, Modeling, & NDE	Aging Systems
Aging Aircraft Systems	
Design, Verification, & Cert. Methods for Flight Critical Systems	Flight Critical System
Design Tech. for High-Integrity Complex Digital Sys.	
3 12 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	
FCSII Technology Integration, Validation, & Effective Transition	Tech Integration
Design & Safety/Risk Assessment of Data Link Tech.	Info Integrity
NAS Tools for Safety & Security	
,	
R/C Health & Usage Monitoring Systems	Health Monitoring
Health Monitoring & Fault Diagnostics	_
<u> </u>	
Human/Task Metrics & Models for Evaluation	HEC Metrics
Human/ Automation Design Principles and Guidelines	Design Principles
Cultural Factors	
Skill Proficiency	
Design to Support Performance Readiness	
Procedures Desgin Methods	
Design to Support Teamwork	
Task Selection and Training	Training
Human Selection & Training	Training
Rotocraft-specific Selection and Training	
Skill Proficiency	
On Tronslottey	
Flight Deck Design and Integration	Design & Integration
Cultural Factors	
Skill Proficiency	
Design to Support Performance Readiness	
Procedures Desgin Methods	
Design to Support Teamwork	

Maintenance Teamwork Procedures & Roles/Res	Maintenance
Maintenance Training	
Maintenance Task Procedures	
Fatigue and Circadian Disruption Impacts	Fatigue and Performance Read
Human/Design Principles & guidelines	Rotorcraft Pilot Aiding
Rotorcraft-specific Pilot Aiding Systems	
Digital Weather Product Dissemination	Strategic Weather Information
Crew/Dispatch/Wx Monitoring Pres. & Decision N	Making
Advanced Weather Products	
Advanced Aviation Meteorology	
Tactical Weather Sensors/ Systems	
Advanced Vision and Sensor Technology	Synthetic Vision
Icing Hazard Solutions	Weather Icing
Turbulence Hazard Solutions	Turbulence
Data Analysis Tools	Data Analysis
Accident/Incident Causal Database	
Safety Data Studies & Tech.	
Data Sharing Technology	Data Sharing
Next-Gen. Communication Tech.	
Aviation System Safety Mon	Monitoring
Strategic Sys. Mgmt. Aids	
Intra-Organizational & Paticipatory Safety Info. Sy	s.
High-fidelity Sys-wide Modeling	
Fire Prevention	Fire Prevention
Systems Approach to Crashworthiness	Systems Approach to Crashwo
Systems Approach to Evacuation	Systems Approach to Evacuat

Program Organization

NASA / FAA Safety Partnership

ASP/ASIST Planning Points of Contact

Aviation Safety Program							
Investment Area ASIST Title(s)		NASA Planning POC			FAA	Plannir	ng POC
Adverse Conditions	Aircraft Control in Adverse Conditions Fault & Damage Tolerance	Carrie Walker c.k.walker@larc.nasa.gov	LaRC	757-864-6031	Bill Emerling	AAR-400	609-485-4009
Engine Failure	Advanced Containment Concepts for Engine Failure	Hugh Gray hugh.r.gray@lerc.nasa.gov		216-433-3230	Bill Emerling	AAR-400	609-485-4009
Aging Aircraft/Systems	Life Prediction, Modeling, & NDE Aging Aircraft Systems	Bill Cazier f.w.cazier@larc.nasa.gov	LaRC	757-864-2860	Mike Basehore	AAR-400	609-485-6342
Flight Critical Systems	Design, Verification, & Cert Methods for Flight Critical Systems Design Techniques for High-Integrity Complex Digital Systems	Carrie Walker c.k.walker@larc.nasa.gov	LaRC	757-864-6031	Bill Emerling	AAR-400	609-485-4009
Tech Integration	FCSII Tech Integration, Validation, & Effective Transition	Joel Sitz joel.sitz@dfrc.nasa.gov	DFRC	805-258-3666	Mike Basehore	AAR-400	609-485-6342
Info Integrity	Design & Safety/Risk Assessment of Data Link Technologies NAS Tools for Safety & Security	Paul Ma pma@mail.arc.nasa.gov	ARC	415-604-3586	Dallas Bighoff	ASY-100	202-493-4249
Health Monitoring	R/C Health & Usage Monitoring Systems Health Monitoring & Fault Diagnostics	Carrie Walker c.k.walker@larc.nasa.gov	LaRC	757-864-6031	Bill Emerling	AAR-400	609-485-4009
Human Error Model/Metrics	Human/Task Metrics & Models for Evaluation	Lee Stone Istone@mail.arc.nasa.gov	ARC	615-404-3240	Mike McAnulty	ACT-510	609-485-4751
Design Principles	Human/ Automation Design Principles and Guidelines Cultural Factors Skill Proficiency Design to Support Performance Readiness Procedures Design Methods Design to Support Teamwork	Mike Shafto mshafto@mail.arc.nasa.gov		415-604-6170	Kathy Abbott	AIR	757-864-2018
Training	Task Selection and Training Human Selection & Training Rotocraft-specific Selection and Training Skill Proficiency	Mary Conners mconnors@mail.arc.nasa.g	ARC ov	415-604-6114	Eleana Edens	AAR-100	202-267-7219
Design & Integration	Flight Deck Design and Integration Cultural Factors Skill Proficiency Design to Support Performance Readiness Procedures Design Methods Design to Support Teamwork	Carrie Walker c.k.walker@larc.nasa.gov	LaRC	757-864-6031	Tom McCloy	AAR-100	202-267-7219

ASP/ASIST Planning Points of Contact (continued)

	1	ı			ı			
Aviation Safety								
Program								
Investment Area	ASIST Title(s)	NASA Planning POC			FAA Planning POC			
Maintenance	Maintenance Teamwork Procedures & Roles/Responsibilities Maintenance Training Maintenance Task Procedures	Mary Conners Amconnors@mail.arc.nasa.gov		415-604-6114	Joan Watson	AAM-240	202-366-6915	
Fatigue and Performance Readiness	Fatigue and Circadian Disruption Impacts	Lee Stone F Istone@mail.arc.nasa.gov	ARC	615-404-3240	Ron Simmons	ABZ-100	202-267-7058	
Rotorcraft Pilot Aiding	Human/Design Principles & guidelines Rotorcraft-specific Pilot Aiding Systems	Bill Hindson A	ARC	415-604-1106				
Strategic Weather Info	Digital Weather Product Dissemination Crew/Dispatch/Wx Monitoring Presentation & Decision Making Advanced Weather Products Advanced Aviation Meteorology Tactical Weather Sensors/ Systems	John White L j.j.white@larc.nasa.gov	LaRC	757-864-3849	Ken Leonard	AUA-400	202-267-7397	
Synthetic Vision	Advanced Vision and Sensor Technology	Carrie Walker L c.k.walker@larc.nasa.gov	LaRC	757-864-6031	Ken Leonard	AUA-400	202-267-7397	
Weather Icing	Icing Hazard Solutions	Jai Won Shin L	LeRC	216-433-8714	Charlie Masters	AAR-400	609-485-6663	
Turbulence	Turbulence Hazard Solutions	John White L j.j.white@larc.nasa.gov	LaRC	757-864-3849	Ken Leonard	AUA-400	202-267-7397	
Data Analysis	Data Analysis Tools Accident/Incident Causal Database Safety Data Studies & Tech.			415-604-6114	Carolyn Edwards	ASY-200	202-267-9168	
Data Sharing	Data Sharing Technology Next-Gen. Communication Tech.	Yuri Gawdiak Aygawdiak@mail.arc.nasa.gov		415-604-4765	Dallas Bighoff	ASY-100	202-493-4249	
Monitoring	Aviation System Safety Mon Strategic Sys. Mgmt. Aids Intra-Organizational & Paticipatory Safety Info. Sys. High-fidelity Sys-wide Modeling	Mary Conners Amconnors@mail.arc.nasa.gov		415-604-6114	Carolyn Edwards	ASY-200	202-267-9168	
Fire Prevention	Fire Prevention	Bill Cazier L f.w.cazier@larc.nasa.gov	LaRC	757-864-2860	Dick Hill	AAR-400	609-485-5997	
Systems Approach to Crashworthiness	Systems Approach to Crashworthiness	Bill Cazier L f.w.cazier@larc.nasa.gov	LaRC	757-864-2860	Gary Frings	AAR-400	609-485-5781	

Communications

- Program Management Personnel
- Technical Planning NASA/FAA Leads
- Internet address
 - http://www.nasa.gov
 - Then go to "Aeronautics"
 - Then go to "Current Events" to find the "ASIST" site
- Video of Briefing

Near Term Timeline

- Industry Brief 8/97
- Detailed Planning Workshops 9/97-12/97
- Early Activities Initiated 10/97 12/97
- Prepare/Issue NASA Research Announcement (or equivalent) - 11/97-2/98
- Proposals Due 1/98 3/98
- Proposals Reviewed 2/98 5/98
- New Starts Initiated 4/98 10/98

Initial Workshop Subjects

- Data Analysis/Data Monitoring Data Sharing
- Health Monitoring
- Strategic Weather Information
- Aging Aircraft/Systems
- Fire Prevention
- Crashworthiness
- Synthetic Vision
- Rotorcraft Pilot Aiding
- Training
- Control in Adverse Conditions
- Information Integrity
- Flight Critical Systems
- Human Error

Project Name/WBS

Overall Potential Accident Rate Impact

Goals/Objectives

R&D Strategy/Approach

Partnership Strategy/Approach

Product Description

Product Implementation Strategy/Plan

Development/Implementation Risk Assessment

Cost/Benefit Assessment

Accident Rate Projection Analysis

Schedule/Milestones 02 03-07

NASA

FAA

DoD

Industry

University International

Milestone Descriptions and Completion Criteria

Budget

98

00 01 02 03-07 98

NASA

Net

PS

R&PM

FAA, DoD, Industry, University, & nternational

Workforce

98	99	00	01	02	03-07

NASA

CS SSC

FAA, DoD, Industry, University, & nternational

Budget Notes

- Baseline \$500 M over five years allocated (FY98-FY02)
- Expect equivalent amount in next five years (FY03-FY07) to reach 10-year goal
- Budget \$ are "FULL COST"
 - $\sim 1/4$ = civil service salaries
 - $\sim 1/4 = program support$
 - ~1/2 = "spendable" for in-house and contracted Research and Development

Program Approach

- NASA will not pay for all of anything
- ASIST activity identified investment areas
- Aviation Safety Program workshops to go from investment areas to specific implementation options
- Aviation Safety Program will then **partner** with industry teams to develop selected options
 - Identify needed and appropriate government and industry roles
 - Identify necessary resource commitments from government/ industry necessary to bring safety product to implementation
 - May form competitive teams

Program Approach (Cont'd)

- Will <u>not</u> look to work with companies/ individuals that say:
 - "we have good capabilities to work in this area, why don't you pay us to help you"
 - "we have a great safety idea, why don't you pay us to develop it"
 - "this safety idea would have prevented this recent accident, so therefore it should be developed"

Program Approach

- **Will** look to work with companies/individuals that say:
 - "we have done our homework to learn the background of the Aviation Safety Program and aviation accident data" *and*,
 - "we have a safety idea that we can systematically show is applicable to an important group of accident types" *and*,
 - "we are ready to commit significant resources of our own to develop this idea" *and*,
 - "we have partners who agree with our approach and are committing resources of their own", *and*
 - "we face a technical/risk/cost/test/data hurdle that the Aviation Safety Program can help overcome", *and*
 - "we have a plan and the motivation to work together to bring this idea/product/result through to system implementation."

Business Partnership Strategy

- Will initiate small scale contracted activities in the near term through readily available methods
- Will look to initiate <u>new</u> contracted/cooperative <u>partnered</u> activities following a workshop process:
 - will likely use NRA or some similar approach to efficiently announce multiple project areas and solicit responses
 - Will aim to form <u>partnered teams with cost-sharing</u>
 <u>participants</u> to jointly develop, test, and **support the** implementation of new technologies and systems.
- Will also use SBIR and STTR programs to target small businesses and universities
- Will likely update NRA solicitation each year

Program Challenge

- Very large number of very capable people/ organizations interested in working with the program
- Will only be able to fund or work directly with a small % of this group
- Challenge for program:
 - Must continue to keep the support, enthusiasm and respect for the program even after a majority of participants not directly funded.
 - Only way to do this is to be seen by the wide community as:
 - addressing the right technical subjects
 - with an efficient, professional approach
 - making aggressive technical progress
 - so as to provide benefits to the whole community.

Summary

Know about the program

- ASIST planning
- Technical subject areas
- Program Organization
- Upcoming schedule

Know how to get involved

- web site
- points of contact
- workshops
- business strategy

Know the program philosophy

- focus on the fatal accident rate goal
- want NASA/FAA/government to be catalyst
- expectations for partners

Summary (Cont'd)

• Hope that:

- You think the program organization/strategy/approach is a good one
- You're enthusiastic about participating
- You aggressively start organizing your commitments/ teams/proposals
- You work with our NASA/FAA team to support, continually assess, and improve our efforts
- We all work *together* to reach the National Goal

